

Project Development Document (PDD)

Nigeria Solar Electric Car Urban Taxi Carbon Project

Version: 3.0

Date: April 01, 2025

Carbon Standard: Tyndall Carbon Standard (Aligned with AMS-III.C: Emission Reductions

through Improved Vehicle Efficiency)

Project Owner: Esse Mobility

1. Project Overview

- **Technology:** 1,000 Esse Mobility Purity Solar Electric Vehicles (EVs) with zero tailpipe emissions.
- **Energy Source:** Solar-powered charging stations (100% renewable).
- Location: Lagos, Benue, Enugu, Kano and Abuja, Nigeria.
- Scale: 1,000 EVs replacing gasoline-powered taxis.
- Crediting Period: 5 years (2024–2028).
- Funding: Fully funded by Esse Mobility (\$18,000/vehicle).
- **Beneficiary Incentive:** 10% of carbon revenue/year/car to drivers.
- Carbon Credit Price: \$30/tCO₂e.
- Profit Sharing:

Esse Mobility: 70% of net profit.Government: 28% of net profit.

o **Zeco:** 2% of net profit.

2. Project Objectives

- Climate Action: Replace 1,000 gasoline-powered taxis with solar EVs to reduce 9,240 tCO₂e/year.
- 2. Urban Health: Eliminate tailpipe emissions, reducing respiratory diseases in Nigeria.
- **3. Economic Inclusion:** Allocate 10% of carbon revenue directly to drivers (\$2,491/driver/year).

- 4. Energy Security: Cut gasoline imports by 4 million liters/year (World Bank, 2023).
- 5. Scalability: Model replicable across Sub-Saharan Africa.

3. Baseline Scenario

Baseline Fuel Consumption

- **Current Practice:** Gasoline-powered taxis (average fuel efficiency: 10 km/L (Nigeria urban average).
- Annual Distance Driven: 40,000 km/year (World Bank Urban Mobility Report, 2023).
- Annual Fuel Use:

$$\frac{40,000\,{\rm km}}{10\,{\rm km/L}} = 4,000\,{\rm L/year/car}.$$

Baseline Emissions Calculation

- Emissions Factor (Gasoline): 2.31 kgCO₂e/L (IPCC 2019).
- Annual Emissions per Car:

$$4,000 L \times 2.31 kgCO2e/L = 9,240 kgCO2e = 9.24 tCO2e/year/car.$$

• Total Baseline Emissions (1,000 cars):

$$1,000 \times 9.24 = 9,240 \text{ tCO2e/year.}$$

3. Project Scenario

Esse Purity Solar EV

- **Energy Source:** Solar charging stations (zero emissions).
- **Annual Electricity Use:** 6,000 kWh/car (solar-generated).
- Project Emissions: 0 tCO₂e/year/car (100% renewable energy).

Emission Reductions

Annual Reductions per Car:

$$9.24 \text{ tCO2e} - 0 = 9.24 \text{ tCO2e/year/car}$$
.

- Total Annual Reductions (1,000 cars)

$$1,000 \times 9.24 = 9,240 \text{ tCO2e /year.}$$

- Buffer Pool (10%): 9,240 × 10% = 924 tCO₂e withheld/year
- Net Issued Credits: 9,240 924 = 8,316 tCO₂e/year.

4. Co-Benefits Certificates (Tyndall Carbon Standard)

,	11	>				
		,):	3
1	r	Y	N	D	A	LI

Co-Benefit	Quantification	Price Premium	Rationale
Health	0.02 DALYs saved/car/year (WHO)	+\$3.0/tCO₂e	\$5,000/DALY
Economic	10% revenue to drivers (\$2,491/driver/year)	+\$1.5/tCO₂e	Poverty alleviation
Energy Security	Reduced oil imports (\$0.5M/year saved)	+\$0.5/tCO₂e	World Bank data
Total Premium	\$5.0/tCO₂e		

Total Co-Benefit Revenue:

8,316 tCO₂e/year x \$5 = **\$41,580/year.**

5. Financial Analysis

A. Cost

Category	Cost
Esse Mobility (Vehicles): 1,000 × \$18,000	\$18,000,000
Project Registration Fee	\$500
Total Initial Cost	\$18,000,500

Revenue Streams (5-Year)

- Carbon Credits (5-year total): 8,316 tCO₂e/year × 5 × \$30 = \$1,247,400.
- Co-Benefits (5-year total): \$41,580/year × 5 = \$207,900.
- Total 5-Year Revenue: \$1,455,300.

Revenue Payment Schedule

- Year 1: 45% of \$1,455,300 = \$654,885.
- Year 2: 55% of \$1,455,300 = \$800,415.

Operational Costs (5-year total)

- **O&M (5%):** $$1,247,400 \times 5\% = $62,370$.
- Tyndall Commission (7.5%): $$1,247,400 \times 7.5\% = $93,555$.
- Insurance (4%): $$1,247,400 \times 4\% = $49,896$.
- Issuance Fee: $8,316 \text{ tCO}_2\text{e/year} \times 5 \times \$0.05 = \$2,079$.
- Beneficiary Payments: 10% of \$1,247,400 = **\$124,740**.
- Total OpEx: \$332,640.

G. Net Profit

Annual Net Profit = \$1,455,300 - \$332,640 = **\$1,122,660** /year

Profit Sharing

- Esse Mobility (70%): 0.70 × \$1,122,660 = \$785,862.
- **Government** (28%): 0.28 × \$1,122,660 = **\$314,345.**
- **Zeco** (2%): 0.02 × 1,122,660 = **\$22,453**.

6. Validation & Verification

- MRV: GPS tracking for distance driven; solar generation data from charging stations.
- Third-Party Audit: Annual verification by Carboncoy Ltd for Tyndall compliance.
- **fNRB Adjustment:** Not applicable (no biomass use).

7. Risk Management

Risk	Mitigation
Solar Infrastructure Failure	Partnerships with local solar firms for maintenance.
Low Driver Adoption	Subsidized training programs + 10% revenue incentive.
Grid Reliance	100% solar charging stations with battery storage.
Credit Price Volatility	60% credits pre-sold via forward contracts (\$25 floor).

8. Monitoring Plan

- Vehicle Usage: GPS tracking and odometer readings.
- Solar Energy: Real-time monitoring of charging stations.
- **Co-Benefits**: Annual surveys on driver income and health outcomes.

9. Stakeholder Engagement

- **Environmental:** Zero tailpipe emissions; solar reduces grid reliance.
- Social:
 - o **Driver Welfare:** \$2,491/year/driver from carbon revenue.
 - o **Job Creation:** 200+ jobs in solar infrastructure maintenance.
- **Safeguards:** Battery recycling program to prevent e-waste.

10. Conclusion

While the project achieves **9,240 tCO₂e/year** in reductions and aligns with SDGs 3, 7, and 11, the financial model shows a **loss due to high upfront vehicle costs**. Scaling to 5,000 vehicles or securing grants could improve viability.

Appendices:

- Solar Charging Station Design
- Driver Training Manual
- Emission Calculation Worksheets

Prepared by: Okey Esse/Esse Mobility

Date: April 01, 2025

Key Notes:

- Emission Reductions: Validated through Tyndall's AMS-III.C methodology.
- Financial Viability: Profitability hinges on carbon credit premiums and scale.
- **Co-Benefits:** Directly tied to SDG targets for health, energy, and equity.